Using STorM32 with ArduPilot: Difference between revisions

From STorM32-BGC Wiki
Jump to navigation Jump to search
Tag: Manual revert
 
(183 intermediate revisions by the same user not shown)
Line 1: Line 1:
''The information on this page refers to firmware v2.49e and BetaPilot 4.0 v0.41, and higher.''
''The information on this page refers to firmware v2.64e, and higher.''


The STorM32 gimbal controller can communicate with an [http://ardupilot.org/ardupilot/index.html ArduPilot] flight controller via a serial UART data line. The serial communication allows for a much richer data transmission and accordingly richer set of features than possible with the traditional PWM connections. Examples are advanced control functions, the [[STorM32-Link]] or the [[NT Camera]] features. It also can lead to a much cleaner wiring.
The STorM32 gimbal controller can communicate with an [http://ardupilot.org/ardupilot/index.html ArduPilot] flight controller via a serial UART data link. The serial communication allows for a much richer data transmission and accordingly richer set of features than possible with the traditional connections such as PWM, PPM, SBUS, CRSF, and alike.


If you just need the range of functionality possible with the standard tilt & pan control, then you don't need anything of the following, and you may stop reading. Some of the more basic features discussed below can also be accomplished by workarounds. Decide yourself which approach fits your needs best. :)
If you only need the range of functionality possible with the conventional tilt & pan control, then you may not need anything of the following. Some of the basic features can also be accomplished in traditional ways. Decide yourself which approach fits your needs best. :)
 
If you want to make best use of your STorM32 gimbal and want 2020-ish capabilities, then you may want to chose [https://github.com/olliw42/BetaPilot BetaPilot] (BetaCopter/BetaPlane). This fork of ArduPilot is specifically designed for the STorM32 gimbal controller, and provides the best range of functions. For details see [[Using STorM32 with BetaPilot]].


<div class="toclimit-3">__TOC__</div>
<div class="toclimit-3">__TOC__</div>
Line 9: Line 11:
== STorM32 - ArduPilot Support ==
== STorM32 - ArduPilot Support ==


ArduPilot offers two mount types, which can be used with the STorM32 controller, the '''''SToRM32 MAVLink''''' (MNT_TYPE = 4) and '''''SToRM32 Serial''''' (MNT_TYPE = 5) mounts. For further details please visit [http://ardupilot.org/copter/docs/common-storm32-gimbal.html#common-storm32-gimbal| ArduPilot Docs > Copter > Optional Hardware > Camera&Gimbals > SToRM32 Gimbal Controller].
'''''ArduPilot''''' offers three mount types, which can in principle be used with the STorM32 controller:
 
* '''''SToRM32 MAVLink''''': MNTx_TYPE = 4
* '''''SToRM32 Serial''''': MNTx_TYPE = 5
* '''''Greemsy''''': MNTx_TYPE = 6
 
For further details on the first two mounts, and instructions on how to use them, please visit [http://ardupilot.org/copter/docs/common-storm32-gimbal.html#common-storm32-gimbal| ArduPilot Docs > Copter > Optional Hardware > Camera&Gimbals > SToRM32 Gimbal Controller].
 
The ''SToRM32 Serial'' mount (MNTx_TYPE = 5) does not work with v2.xx firmwares, and should not be considered except for legacy I2C setups running v0.9x firmware.
 
The ''Greemsy'' mount (MNTx_TYPE = 6) is MAVLink based, and thus can in principle be used with STorM32. This mount in fact exploits the 'new' gimbal messages of the [https://mavlink.io/en/services/gimbal_v2.html gimbal protocol v2], and would offer some real benefits. However, it unfortuntaley violates and breaks the MAVLink standard in various respects, and interoperability with STorM32 is thus mixed.
 
The ''SToRM32 MAVLink'' mount (MNTx_TYPE = 4) currently appears to work best with STorM32 in the sense that it produces the least issues, but it is quite limited in its functionality.
 
For both the ''SToRM32 MAVLink'' (MNTx_TYPE = 4) and ''Greemsy'' (MNTx_TYPE = 6) mounts, it is not fully clear what works and what does not work at the time of writing, but the ''SToRM32 MAVLink'' mount (MNTx_TYPE = 4) should work fine with respect to controlling a STorM32 gimbal.
 
'''''Disclaimer''': ArduPilot's gimbal support is a constant source of issues, in terms of incompatibilities with the official MAVLink standard and/or flaws, and the details can quite vary with the ArduPilot firmware version. Also the ArduPilot documentation can be out-of-date. Please note that STorM32 can't do anything about this, it's ArduPilot, and please also note that the STorM32 firmware author is neither responsible for the implementation of ArduPilot's mount types nor for ArduPilot's documentation.''


{{COMMENT|Unfortunately, ArduPilot's gimbal support is partially flawed. That is, many features you will find to work great, but some you will find to not work well. STorM32 can't do anything about it, it's ArduPilot. Please also note that the STorM32 firmware author is not responsible for the implementation of ArduPilot's mounts.}}
== Virtual Channel Configuration ==


The '''''BetaPilot''''' fork of ArduPilot additionally offers the '''''STorM32 MAVLink2''''' (MNT_TYPE = 83) mount type, which provides the best range of functions.  
ArduPilot does not emit the RC_CHANNELS MAVLink message by default, which could be desired for taking advantage of the STorM32's virtual channel feature.


A comparison of the different techniques to connect the STorM32 controller with the flight controller is given in the following feature matrix:
It can be activated in the flight controller by setting the SRx_RC_CHAN parameter to a non-zero value, where 'x' refers to the stream associated to the serial port which is used for the MAVLink communication with the STorM32 controller.


=== Feature Matrix ===
For more details on the feature see [[Using_STorM32_with_BetaPilot#Virtual_Channel_Configuration|Virtual Channel Configuration]].
(to the best of the authors knowledge)
<!--
== Feature Matrix ==
(for ArduPilot 4.2)(the status for ArduPilot 4.3 is presently unclear)(all to the best of the authors knowledge)
{| class="wikitable" style="text-align: center;"
{| class="wikitable" style="text-align: center;"
!Feature
!Feature
!PWM
!Traditional<br>PWM, PPM, SBUS, ...
!SToRM32 MAVLink
!SToRM32 MAVLink<br>(MNT_TYPE = 4)
!SToRM32 Serial
!SToRM32 Serial<br>(MNT_TYPE = 5)
!BetaPilot /<br> STorM32 MAVLink2
!BetaPilot<br> STorM32 MAVLink2<br>(MNT_TYPE = 83)
|-
|-
| style="text-align:left;" | Gimbal Angle Control || style="background-color: lightgreen;"| x || style="background-color: #d2f8d2;"| x <sup>(?)</sup> || style="background-color: lightgreen;"| x || style="background-color: lightgreen;"| x
| style="text-align:left;" | Gimbal Angle Control || style="background-color: lightgreen;"| x || style="background-color: #d2f8d2;"| x <sup>(?)</sup> || style="background-color: lightgreen;"| x || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | Solo Smart Shots || style="background-color: lightgreen;"| x || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | MOUNT_STATUS message || - || style="background-color: #d2f8d2;"| x <sup>(1)</sup> || style="background-color: #d2f8d2;"| x <sup>(2)</sup> || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | MAV_MOUNT_STATUS message || - || style="background-color: #d2f8d2;"| x <sup>(1)</sup> || style="background-color: #d2f8d2;"| x <sup>(2)</sup> || style="background-color: lightgreen;"| x
| style="text-align:left;" | ATTITUDE message || - || - || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | Camera Trigger || style="background-color: lightgreen;"| x || style="background-color: lightgreen;"| x || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | Camera Trigger || style="background-color: lightgreen;"| x || style="background-color: lightgreen;"| x || - || style="background-color: lightgreen;"| x
Line 36: Line 56:
| style="text-align:left;" | Gimbal Point in MP || - || style="background-color: lightgreen;"| x || style="background-color: #d2f8d2;"| x <sup>(2)</sup> || style="background-color: lightgreen;"| x
| style="text-align:left;" | Gimbal Point in MP || - || style="background-color: lightgreen;"| x || style="background-color: #d2f8d2;"| x <sup>(2)</sup> || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | Camera Manager in QGC || - || style="background-color: #d2f8d2;"| x <sup>(3)</sup> || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | Solo Smart Shots || style="background-color: #d2f8d2;"| x <sup>(3)|| - || - || style="background-color: #d2f8d2;"| x <sup>(3)</sup>  
|-
| style="text-align:left;" | Camera Manager in QGC || - || style="background-color: lightgreen;"| x || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | MAVLink Parameters || - || style="background-color: lightgreen;"| x || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | MAVLink Parameters || - || style="background-color: lightgreen;"| x || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | Video on/off || - || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | Video Control in Missions || - || style="background-color: lightgreen;"| x || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | 360° Gimbal with Free Look || - || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | 360° Gimbal with Free Look || style="background-color: lightgreen;"| x || - || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | STorM32 Functions || - || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | STorM32 Functions || style="background-color: lightgreen;"| x || - || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | STorM32 Scripts || - || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | STorM32 Scripts || style="background-color: lightgreen;"| x || - || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | STorM32-Link: Horizon Drift Comp. || - || - || - || style="background-color: lightgreen;"| x <sup></sup>
| style="text-align:left;" | STorM32-Link: Horizon Drift Comp. || - || - || - || style="background-color: lightgreen;"| x <sup></sup>
Line 52: Line 74:
| style="text-align:left;" | STorM32-Link: Yaw Drift Comp. || - || - || - || style="background-color: lightgreen;"| x <sup></sup>
| style="text-align:left;" | STorM32-Link: Yaw Drift Comp. || - || - || - || style="background-color: lightgreen;"| x <sup></sup>
|-
|-
| style="text-align:left;" | MAVLink Passthrough Configuration || - || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | MAVLink Passthrough Configuration || - || style="background-color: lightgreen;"| x || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | MAVLink Camera Micro Service || - || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | MAVLink Camera Microservice || - || style="background-color: lightgreen;"| x || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | MAVLink Advanced Features || - || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | MAVLink Advanced Features || - || - || - || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | MAVLink Statustext messages || - || - || - || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | STorM32 Gimbal Protocol || - || - || - || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | Prearm Checks || - || - || - || style="background-color: lightgreen;"| x
|}
|}


Line 63: Line 91:
(1) The message reports the last set point, not the actual gimbal/camera orientation.
(1) The message reports the last set point, not the actual gimbal/camera orientation.


(2) Works only for deprecated v0.xx firmwares.
(2) Works only for deprecated v0.9x firmwares.
 
(3) Only basic features.
 
{{COMMENT|Note that some of the features listed in the last column only need BetaPilot but do not require that the STorM32 MAVLink2 mount is enabled, since they are standard MAVLink.}}
 
== BetaPilot ==
 
Some modifications to the ArduPilot firmware were made and the result called BetaPilot. If you want to make best use of your STorM32 gimbal and want 2020-ish capabilities then you definitely want to chose BetaPilot. :)
 
{{COMMENT|Before using BetaPilot it is '''strongly''' recommended to first install the original ArduPilot firmware and get the vehicle operating flawlessly with it, and only then to install BetaPilot.}}
<!--The latest versions of BetaCopter and the STorM32 firmware can be downloaded from here: [[Downloads]].-->
 
In order to establish a working communication between the STorM32 controller and the flight controller, parameters in both BetaPilot and STorM32 need to be adjusted, as described in the following.
 
The BetaPilot fork implements the latest MAVLink standard as well as the '''''STorM32 MAVLink2''''' mount type (MNT_TYPE = 83), which enable the following features.
 
=== STorM32 MAVLink2 ===
----
 
The STorM32 controller needs to be connected via one of its UART ports to one of the UART ports on the flight controller, and these settings be made:
 
'''''Settings in STorM32:'''''
* {{PARAMNAME|Mavlink Gimbal}} = {{PARAMVALUE|Gimbal1}} or higher
* {{PARAMNAME|Mavlink Gimbal Stream}} = {{PARAMVALUE|attitude}} or higher (this is optional but recommended)
* {{PARAMNAME|Mavlink Uart Port}} = {{PARAMVALUE|uart}} if the UART port is used (this is the default)
 
The other settings can normally be left at their default (if you change the com port then the STorM32 needs to be rebooted). A complete description of the configuration parameters is provided in the article [[MAVLink Communication]].
 
'''''Settings in BetaPilot:'''''
* MNT_TYPE = 83
* SERIALx_PROTOCOL = 2
* SERIALx_BAUD = 115
 
SERIALx can be any of the available serial ports SERIAL1, SERIAL2, and so on. This enables the '''''STorM32 MAVLink2''''' mount (the flight controller must be rebooted).
 
With these settings you should notice:
 
* In MissonPlanner or any other GCS, a additional MAVLink component named GIMBAL will be present.
* In the STorM32 {{GUI|Dashboard}}, the MAVLINK field will show PRESENT.
* In the STorM32{{GUI|Dashboard}}, the STorM32-Link field will show PRESENT (or a similar positive message).
 
{{COMMENT|The default baudrate for the STorM32 serial ports is 115200 bps, hence in ArduPilot SERIALx_BAUD has to be set to 115. However, other baudrates can be configured; e.g., for 230400 bps one sets the STorM32 parameter {{PARAMNAME|Uart Baudrate}} to {{PARAMVALUE|230400}} and the ArduPilot parameter SERIALx_BAUD to 230.}}
 
==== STorM32 via UAVCAN ====
----
 
The STorM32 controller can also be connected via CAN bus to the ArduPilot flight controller. This option is however not further discussed here (details of STorM32's UAVCAN support are described in [[UAVCAN]]).
 
{{#ev:youtube|Sw24wAIoemA|360}}
 
=== STorM32-Link ===
----
 
'''''Settings in STorM32:'''''
* {{PARAMNAME|STorM32Link Configuration}} = {{PARAMVALUE|v1}}
 
With MNT_TYPE = 83 the flight controller also sends out the STorM32-Link data to the STorM32 gimbal, but the data are used by the STorM32 controller only when {{PARAMNAME|STorM32Link Configuration}} = {{PARAMVALUE|v1}}. In the STorM32 GUI, specifically the {{GUI|Dashboard}} and/or the {{GUI|Data Display}}, you should note that the STorM32-Link field goes to INUSE and OK.
 
{{COMMENT|If only the 'conventional' data but not the STorM32-Link data are received by the STorM32 controller, then a PRESENT will be displayed in order to indicate that a working link has been established between STorM32 and BetaPilot, and that the 'conventional' control functions are all working. The INUSE message will not appear, which indicates that the STorM32-Link is not active.}}
 
{{#ev:youtube|z03PkDf0R-0|360}}
 
=== Virtual Channel Configuration ===
----


'''''Settings in STorM32:'''''
(3) Only up to ArduCopter 3.6. ArduCopter 4.0 has introduced two bugs which the STorM32 controller cannot work around.
* {{PARAMNAME|Virtual Channel Configuration}} = {{PARAMVALUE|serial}}
-->
 
With this setting, all STorM32 [[Inputs and Functions|functions]] can be invoked by selecting any of the {{PARAMVALUE|Virtual-1}} - {{PARAMVALUE|Virtual-16}} input channels, exactly as one would do it if the STorM32 controller would be directly connected to a receiver.
 
This allows us to do many useful things, such as activating a script or triggering video on/off from the transmitter. It however also allows us to do nonsense, and it is in the user's responsibility to avoid that. For instance, if ArduPilot is in Rc Targeting mode, and e.g. {{PARAMNAME|Rc Pitch Control}} is set to a virtual input channel, then the gimbal may move in funny ways since it may receive the transmitter stick information from both ArduPilot and the receiver. On the other hand, if ArduPilot is in GPS or ROI Targeting mode, then one gets "free look", which is useful and quite cool actually. As said, all this is exactly as if the receiver would be directly connected to the STorM32 controller on its RC ports.
 
=== Passthrough Configuration ===
----
 
This feature allows you to connect the STorM32 GUI to the USB or any (MAVLink enabled) serial port of the flight controller, and to directly communicate with the STorM32 gimbal.
 
This is extremely convenient for configuring STorM32 gimbals when they are e.g. installed permanently in the vehicle. This also works via a wireless telemetry link, and thus opens the option of e.g. tuning the gimbal during flight, and further unheard of possibilities for controlling the gimbal during flight.
 
This preliminary demo video demonstrates the pass-through feature:
 
{|
|width=370|{{#ev:youtube|FRyZ7VZ5lvY|360}}
|}


== Testing the Connection ==
== Testing the Connection ==


The serial MAVLink connection can be tested in several ways. The following tests do not require that the vehicle is completely built and/or set up, and do not require that the vehicle is armed.
The serial MAVLink connection can be tested in several ways. Suggestions can be found in [[Using_STorM32_with_BetaPilot#Testing_the_Connection | Using STorM32 with BetaPilot: Testing the Connection]]. They may not all work with native ArduPilot, but many will.
 
* '''''MAVLINK field in the STorM32 GUI''''': The {{GUI|Dashboard}} has a field named MAVLINK. It should display PRESENT.
 
* '''''STorM32-LINK field in the STorM32 GUI''''': The {{GUI|Dashboard}} and {{GUI|Data Display}} each have a field which is related to the STorM32-Link. They should display PRESENT, INUSE or OK.
 
* '''''MissonPlanner or QGroundControl''''': An additional MAVLink component named GIMBAL should be present.
 
* '''''Message box in MissonPlanner''''': With the GIMBAL component selected, in the message box several text messages related to the STorM32 gimbal should appear. In particular, a message like "STorM32 v2.40 nt v1.30 F103RC" informing about the STorM32 firmware version should be visible.
 
* '''''Gimbal RC Targeting''''': With ArduPilot in RC Targeting mode (which should be the default mode), the gimbal can be moved with the transmitter sticks.
 
<!--* '''''Trigger Camera NOW''''': In MissionPlanner or QGroundControl the camera can be triggered. On v1.3 STorM32 boards the camera trigger can be tested by e.g. connecting a visible-light LED (red, green, blue, not IR) to the #IR port.-->
 
== Gimbal Point ==
 
MissionPlanner supports what it calls a 'gimbal point'. It is a blue point icon on the map, which indicates the estimated position at which the gimbal is looking at (see also e.g. https://github.com/ArduPilot/MissionPlanner/issues/1323). In order to activate it, the following ArduPilot parameters must be set:
 
'''''Settings in ArduPilot:'''''
* MNT_STAB_ROLL = 0
* MNT_STAB_TILT = 1

Latest revision as of 09:00, 28 January 2024

The information on this page refers to firmware v2.64e, and higher.

The STorM32 gimbal controller can communicate with an ArduPilot flight controller via a serial UART data link. The serial communication allows for a much richer data transmission and accordingly richer set of features than possible with the traditional connections such as PWM, PPM, SBUS, CRSF, and alike.

If you only need the range of functionality possible with the conventional tilt & pan control, then you may not need anything of the following. Some of the basic features can also be accomplished in traditional ways. Decide yourself which approach fits your needs best. :)

If you want to make best use of your STorM32 gimbal and want 2020-ish capabilities, then you may want to chose BetaPilot (BetaCopter/BetaPlane). This fork of ArduPilot is specifically designed for the STorM32 gimbal controller, and provides the best range of functions. For details see Using STorM32 with BetaPilot.

STorM32 - ArduPilot Support

ArduPilot offers three mount types, which can in principle be used with the STorM32 controller:

  • SToRM32 MAVLink: MNTx_TYPE = 4
  • SToRM32 Serial: MNTx_TYPE = 5
  • Greemsy: MNTx_TYPE = 6

For further details on the first two mounts, and instructions on how to use them, please visit ArduPilot Docs > Copter > Optional Hardware > Camera&Gimbals > SToRM32 Gimbal Controller.

The SToRM32 Serial mount (MNTx_TYPE = 5) does not work with v2.xx firmwares, and should not be considered except for legacy I2C setups running v0.9x firmware.

The Greemsy mount (MNTx_TYPE = 6) is MAVLink based, and thus can in principle be used with STorM32. This mount in fact exploits the 'new' gimbal messages of the gimbal protocol v2, and would offer some real benefits. However, it unfortuntaley violates and breaks the MAVLink standard in various respects, and interoperability with STorM32 is thus mixed.

The SToRM32 MAVLink mount (MNTx_TYPE = 4) currently appears to work best with STorM32 in the sense that it produces the least issues, but it is quite limited in its functionality.

For both the SToRM32 MAVLink (MNTx_TYPE = 4) and Greemsy (MNTx_TYPE = 6) mounts, it is not fully clear what works and what does not work at the time of writing, but the SToRM32 MAVLink mount (MNTx_TYPE = 4) should work fine with respect to controlling a STorM32 gimbal.

Disclaimer: ArduPilot's gimbal support is a constant source of issues, in terms of incompatibilities with the official MAVLink standard and/or flaws, and the details can quite vary with the ArduPilot firmware version. Also the ArduPilot documentation can be out-of-date. Please note that STorM32 can't do anything about this, it's ArduPilot, and please also note that the STorM32 firmware author is neither responsible for the implementation of ArduPilot's mount types nor for ArduPilot's documentation.

Virtual Channel Configuration

ArduPilot does not emit the RC_CHANNELS MAVLink message by default, which could be desired for taking advantage of the STorM32's virtual channel feature.

It can be activated in the flight controller by setting the SRx_RC_CHAN parameter to a non-zero value, where 'x' refers to the stream associated to the serial port which is used for the MAVLink communication with the STorM32 controller.

For more details on the feature see Virtual Channel Configuration.

Testing the Connection

The serial MAVLink connection can be tested in several ways. Suggestions can be found in Using STorM32 with BetaPilot: Testing the Connection. They may not all work with native ArduPilot, but many will.