Using STorM32 with ArduPilot: Difference between revisions

From STorM32-BGC Wiki
Jump to navigation Jump to search
Tag: Manual revert
 
(266 intermediate revisions by the same user not shown)
Line 1: Line 1:
''The information on this page refers to firmware v2.48e and BetaPilot 4.0 v002, and higher.''
''The information on this page refers to firmware v2.64e, and higher.''


The STorM32 gimbal controller can communicate with an [http://ardupilot.org/ardupilot/index.html ArduPilot] flight controller via a serial UART data line. The serial communication allows for a much richer data transmission and accordingly richer set of features than possible with the traditional PWM connections. Examples are advanced control functions, the [[STorM32-Link]] or the [[NT Camera]] features. It also can lead to a much cleaner wiring.
The STorM32 gimbal controller can communicate with an [http://ardupilot.org/ardupilot/index.html ArduPilot] flight controller via a serial UART data link. The serial communication allows for a much richer data transmission and accordingly richer set of features than possible with the traditional connections such as PWM, PPM, SBUS, CRSF, and alike.


If you just need the range of functionality possible with the standard tilt & pan control, then you don't need anything of the following, and you may stop reading here. Also, some of the features discussed below can be accomplished by workarounds. Decide yourself which approach fits your needs best. :)
If you only need the range of functionality possible with the conventional tilt & pan control, then you may not need anything of the following. Some of the basic features can also be accomplished in traditional ways. Decide yourself which approach fits your needs best. :)
 
If you want to make best use of your STorM32 gimbal and want 2020-ish capabilities, then you may want to chose [https://github.com/olliw42/BetaPilot BetaPilot] (BetaCopter/BetaPlane). This fork of ArduPilot is specifically designed for the STorM32 gimbal controller, and provides the best range of functions. For details see [[Using STorM32 with BetaPilot]].
 
<div class="toclimit-3">__TOC__</div>


== STorM32 - ArduPilot Support ==
== STorM32 - ArduPilot Support ==


ArduPilot offers two mount types, which can be used with the STorM32 controller, the '''''SToRM32 MAVLink''''' (MNT_TYPE = 4) and '''''SToRM32 Serial''''' (MNT_TYPE = 5) mounts. For further details please visit [http://ardupilot.org/copter/docs/common-storm32-gimbal.html#common-storm32-gimbal| ArduPilot Docs > Copter > Optional Hardware > Camera&Gimbals > SToRM32 Gimbal Controller].
'''''ArduPilot''''' offers three mount types, which can in principle be used with the STorM32 controller:


{{COMMENT|Unfortunately, ArduPilot's gimbal support is partially flawed. That is, many features you will find to work great, but some you will find to not work well. STorM32 can't do anything about it, it's ArduPilot. Please also note that the STorM32 firmware author is not responsible for the implementation of the above mounts; again, it's ArduPilot.}}
* '''''SToRM32 MAVLink''''': MNTx_TYPE = 4
* '''''SToRM32 Serial''''': MNTx_TYPE = 5
* '''''Greemsy''''': MNTx_TYPE = 6


The '''''BetaPilot''''' fork of ArduPilot additionally offers the '''''STorM32 MAVLink2''''' (MNT_TYPE = 83) mount type, which provides the best range of functions.
For further details on the first two mounts, and instructions on how to use them, please visit [http://ardupilot.org/copter/docs/common-storm32-gimbal.html#common-storm32-gimbal| ArduPilot Docs > Copter > Optional Hardware > Camera&Gimbals > SToRM32 Gimbal Controller].


A comparison of the different techniques to connect the STorM32 controller with the flight controller is given in the following feature matrix.
The ''SToRM32 Serial'' mount (MNTx_TYPE = 5) does not work with v2.xx firmwares, and should not be considered except for legacy I2C setups running v0.9x firmware.


=== Feature Matrix ===
The ''Greemsy'' mount (MNTx_TYPE = 6) is MAVLink based, and thus can in principle be used with STorM32. This mount in fact exploits the 'new' gimbal messages of the [https://mavlink.io/en/services/gimbal_v2.html gimbal protocol v2], and would offer some real benefits. However, it unfortuntaley violates and breaks the MAVLink standard in various respects, and interoperability with STorM32 is thus mixed.
(to the best of the authors knowledge)
 
The ''SToRM32 MAVLink'' mount (MNTx_TYPE = 4) currently appears to work best with STorM32 in the sense that it produces the least issues, but it is quite limited in its functionality.
 
For both the ''SToRM32 MAVLink'' (MNTx_TYPE = 4) and ''Greemsy'' (MNTx_TYPE = 6) mounts, it is not fully clear what works and what does not work at the time of writing, but the ''SToRM32 MAVLink'' mount (MNTx_TYPE = 4) should work fine with respect to controlling a STorM32 gimbal.
 
'''''Disclaimer''': ArduPilot's gimbal support is a constant source of issues, in terms of incompatibilities with the official MAVLink standard and/or flaws, and the details can quite vary with the ArduPilot firmware version. Also the ArduPilot documentation can be out-of-date. Please note that STorM32 can't do anything about this, it's ArduPilot, and please also note that the STorM32 firmware author is neither responsible for the implementation of ArduPilot's mount types nor for ArduPilot's documentation.''
 
== Virtual Channel Configuration ==
 
ArduPilot does not emit the RC_CHANNELS MAVLink message by default, which could be desired for taking advantage of the STorM32's virtual channel feature.
 
It can be activated in the flight controller by setting the SRx_RC_CHAN parameter to a non-zero value, where 'x' refers to the stream associated to the serial port which is used for the MAVLink communication with the STorM32 controller.
 
For more details on the feature see [[Using_STorM32_with_BetaPilot#Virtual_Channel_Configuration|Virtual Channel Configuration]].
<!--
== Feature Matrix ==
(for ArduPilot 4.2)(the status for ArduPilot 4.3 is presently unclear)(all to the best of the authors knowledge)
{| class="wikitable" style="text-align: center;"
{| class="wikitable" style="text-align: center;"
!Feature
!Feature
!PWM
!Traditional<br>PWM, PPM, SBUS, ...
!SToRM32 MAVLink
!SToRM32 MAVLink<br>(MNT_TYPE = 4)
!SToRM32 Serial
!SToRM32 Serial<br>(MNT_TYPE = 5)
!STorM32 MAVLink2
!BetaPilot<br> STorM32 MAVLink2<br>(MNT_TYPE = 83)
|-
| style="text-align:left;" | Gimbal Angle Control || style="background-color: lightgreen;"| x || style="background-color: #d2f8d2;"| x <sup>(?)</sup> || style="background-color: lightgreen;"| x || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | MOUNT_STATUS message || - || style="background-color: #d2f8d2;"| x <sup>(1)</sup> || style="background-color: #d2f8d2;"| x <sup>(2)</sup> || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | ATTITUDE message || - || - || - || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | Camera Trigger || style="background-color: lightgreen;"| x || style="background-color: lightgreen;"| x || - || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | Gimbal Point in MP || - || style="background-color: lightgreen;"| x || style="background-color: #d2f8d2;"| x <sup>(2)</sup> || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | Solo Smart Shots || style="background-color: #d2f8d2;"| x <sup>(3)|| - || - || style="background-color: #d2f8d2;"| x <sup>(3)</sup>
|-
|-
| style="text-align:left;" | Gimbal Angle Control || style="background-color: lightgreen;"| x || style="background-color: lightgreen;"| x <sup>(?)</sup> || style="background-color: lightgreen;"| x || style="background-color: lightgreen;"| x
| style="text-align:left;" | Camera Manager in QGC || - || style="background-color: lightgreen;"| x || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | Solo Smart Shots || style="background-color: lightgreen;"| x || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | MAVLink Parameters || - || style="background-color: lightgreen;"| x || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | MAV_MOUNT_STATUS message || - || style="background-color: lightgreen;"| x <sup>(1)</sup> || style="background-color: lightgreen;"| x <sup>(2)</sup> || style="background-color: lightgreen;"| x
| style="text-align:left;" | Video Control in Missions || - || style="background-color: lightgreen;"| x || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | Camera Trigger || style="background-color: lightgreen;"| x || style="background-color: lightgreen;"| x <sup>(?)</sup> || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | 360° Gimbal with Free Look || style="background-color: lightgreen;"| x || - || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | Gimbal Point in MP || - || style="background-color: lightgreen;"| x <sup>(?)</sup> || style="background-color: lightgreen;"| x || style="background-color: lightgreen;"| x
| style="text-align:left;" | STorM32 Functions || style="background-color: lightgreen;"| x || - || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | Video on/off || - || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | STorM32 Scripts || style="background-color: lightgreen;"| x || - || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | 360° Gimbal with Free Look || - || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | STorM32-Link: Horizon Drift Comp. || - || - || - || style="background-color: lightgreen;"| x <sup></sup>
|-
|-
| style="text-align:left;" | STorM32 Functions || - || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | STorM32-Link: Yaw Drift Comp. || - || - || - || style="background-color: lightgreen;"| x <sup></sup>
|-
|-
| style="text-align:left;" | STorM32 Scripts || - || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | MAVLink Passthrough Configuration || - || style="background-color: lightgreen;"| x || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | STorM32-Link: Horizon Drift Comp. || - || - || - || style="background-color: lightgreen;"| x <sup>(3)</sup>
| style="text-align:left;" | MAVLink Camera Microservice || - || style="background-color: lightgreen;"| x || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | STorM32-Link: Yaw Drift Comp. || - || - || - || style="background-color: lightgreen;"| x <sup>(3)</sup>
| style="text-align:left;" | MAVLink Advanced Features || - || - || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | Passthrough Configuration || - || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | MAVLink Statustext messages || - || - || - || style="background-color: lightgreen;"| x
|-
|-
| style="text-align:left;" | Camera Micro Service || - || - || - || style="background-color: lightgreen;"| x
| style="text-align:left;" | STorM32 Gimbal Protocol || - || - || - || style="background-color: lightgreen;"| x
|-
| style="text-align:left;" | Prearm Checks || - || - || - || style="background-color: lightgreen;"| x
|}
|}


(?) May or may not work properly in the latest ArduPilot releases. Please check with the ArduPilot community.
(?) Many but not all features work in the latest ArduPilot releases. Please check with the ArduPilot community.


(1) The message reports the last set point, not the actual gimbal/camera orientation.
(1) The message reports the last set point, not the actual gimbal/camera orientation.


(2) Works only for deprecated v0.xx firmwares.
(2) Works only for deprecated v0.9x firmwares.


(3) Works only for T-STorM32 gimbals.
(3) Only up to ArduCopter 3.6. ArduCopter 4.0 has introduced two bugs which the STorM32 controller cannot work around.
 
-->
== BetaPilot ==
 
Some modifications to the ArduPilot firmware were made and the result called BetaPilot, which provides simply the best support of STorM32 gimbals.  
 
'''''Comments:'''''
* ''If you are satisfied with ArduPilot's gimbal support then there is really no need to use BetaPilot. However, if you want to make best use of STorM32 and want 2019-ish capabilities then you seriously want to chose BetaPilot.''
* ''Before using BetaPilot it is '''strongly''' recommended to first install the original ArduPilot firmware and get the copter/plane flying flawlessly with it, and only then to install BetaPilot.''
<!--The latest versions of BetaCopter and the STorM32 firmware can be downloaded from here: [[Downloads]].-->
 
In order to establish a working communication between the STorM32 controller and the flight controller, parameters on both sides, BetaPilot and STorM32, need to be adjusted, as described in the following.
 
The BetaCopter fork implements the '''''STorM32 MAVLink2''''' mount type, which handles '''''all''''' of the following features. If the STorM32 MAVLink2 mount is not activated, then the BetaPilot firmware will behave exactly like the original ArduPilot firmware, with no side effects.
 
=== STorM32 MAVLink2 ===
----
 
The STorM32 board needs to be connected via one of its UART ports to one of the UART ports on the flight controller, and these settings be made:
 
'''''Settings in BetaPilot:'''''
* MNT_TYPE = 83
* SERIALx_PROTOCOL = 2
* SERIALx_BAUD = 115
 
'''''Settings in STorM32:'''''
* {{PARAMNAME|Mavlink Gimbal}} = {{PARAMVALUE|Gimbal1}} or higher
* {{PARAMNAME|Mavlink Gimbal Stream}} = {{PARAMVALUE|attitude}} or higher
* {{PARAMNAME|Mavlink Uart Port}} = {{PARAMVALUE|uart}} if the UART port is used (is default)
 
The other settings can normally be left at their default (a complete description of the configuration parameters is provided in the article [[]]);
 
With the mount activated, you should notice:
 
* All ArduPilot mount features such as gimbal control, POI, follow me, smart shots, and so on, are working.
* All ArduPilot camera features are working. That is, whenever a certain path of actions (MAVLink, receiver, mission, UAVCAN, ...) lets ArduPilot want to take a picture, the STorM32 controller will know and activate its camera functions.
* In MissonPlanner or any other ground control station an additional MAVLink component named GIMBAL will be present.
* In the STorM32 GUI, the STorM32-Link, providing horizon drift and yaw drift compensation, and additional features, is present.
* In the STorM32 {{GUI|Dashboard}} , the MAVLINK field will show PRESENT.
 
 
{{COMMENT|The default baudrate of the STorM32 serial ports is 115200 bps, hence in ArduPilot SERIALx_BAUD has to be set to 115. However, other baudrates can be configured; for e.g. 230400 bps one sets the STorM32 parameter {{PARAMNAME|Uart Baudrate}} to {{PARAMVALUE|230400}} and the ArduPilot parameter SERIALx_BAUD to 230.}}
 
=== STorM32 via UAVCAN ===
----
 
The STorM32 can also be connected via the CAN bus to the ArduPilot flight controller. This option is mentioned here solely for completeness (details of the STorM32's UAVCAN support are described in the article [[UAVCAN]]).
 
{{#ev:youtube|Sw24wAIoemA|360}}
 
=== STorM32-Link ===
----
 
'''''Parameter in STorM32:'''''
* {{PARAMNAME|STorM32Link Configuration}} = {{PARAMVALUE|v1}}
 
With MNT_TYPE = 83 also the STorM32-Link is activated (for details see [[STorM32-Link]]). That is, in addition to the 'conventional' data also the data required for the functioning of the STorM32-Link are emitted by the flight controller. The setting {{PARAMNAME|STorM32Link Configuration}} = {{PARAMVALUE|v1}} makes the STorM32 using them. In the STorM32 GUI, specifically the {{GUI|Dashboard}} and/or the {{GUI|Data Display}}, you should note that the STorM32-Link field goes to INUSE and OK.
 
{{COMMENT|If only the 'conventional' data but not the STorM32-Link data are received by the STorM32 controller, then an ISPRESENT and/or OK will be displayed to indicate that a working link has been established between STorM32 and BetaCopter, and that the 'conventional' control functions are all working. The INUSE flag will not appear, which indicates that the STorM32-Link, i.e., the horizon and yaw drift compensation feature, is not active.}}
 
{{COMMENT|The STorM32-Link is available only for T-STorM32 gimbals, but not the conventional STorM32 NT gimbals.}}
 
{{#ev:youtube|z03PkDf0R-0|360}}
 
=== STorM32: Virtual Channel Configuration ===
----
 
'''''Parameter in STorM32:'''''
* {{PARAMNAME|Virtual Channel Configuration}} = {{PARAMVALUE|serial}}
 
With this setting, all STorM32 [[Inputs and Functions|functions]] can be invoked by selecting any of the {{PARAMVALUE|Virtual-1}} - {{PARAMVALUE|Virtual-16}} input channels, exactly as one would do if the STorM32 controller would be directly connected to the receiver. This allows doing many useful things, such as activating a script or triggering video on/off from the transmitter. It however also allows doing nonsense, and it is the users responsibility to avoid that. For instance, if the ArduPilot mount is activated and is in Rc Targeting mode, and e.g. {{PARAMNAME|Rc Pitch Control}} is set to a virtual input channel, then the gimbal may move in funny ways since it may receive the transmitter stick information from both the ArduPilot mount and the receiver. In contrast, if the ArduPilot mount is in GPS or ROI Targeting mode, then one gets "free look", which is useful and quite cool actually. As said, all this is exactly as if the receiver would be directly connected to the STorM32 controller on its RC ports.
 
=== RC Targeting ===
----
 
'''''Parameter in BetaCopter:'''''
* MNT_STRM_BM
 
The BetaCopter parameter MNT_STRM_BM, which is a bit mask, allows us to enable/disable various functions. Especially the behavior of the RC Targeting mode can be modified. By setting the 1-st bit of MNT_STRM_BM, that is by adding +1 to the current value, the RC Targeting is determined now by the STorM32 parameters in the {{GUI|Rc Inputs}} tab. This especially allows us to set a relative mode.
 
=== Passthru Configuration ===
----
 
'''''Parameter in BetaCopter:'''''
* MNT_STRM_PTSER
 
This feature allows you to connect the STorM32 GUI to the USB port of an ArduPilot flight controller, or in fact to any of its serial ports, or the UAVCAN bus, and to directly communicate with the STorM32 gimbal. This is extremely convennient for configuring STorM32 gimbals when e.g. installed permanently in the flight vehicle. This also works via a wireless telemetry link, and thus opens the option of e.g. tuning the gimbal during flight, and further unheard of possibilities for controlling the gimbal during flight.
 
These two video demonstrate this feature, and also explain the setup:
 
{|
|width=370|{{#ev:youtube|lz_0BdGGuxc|360}}
|{{#ev:youtube|IF1_38fVppU|360}}
|}
 
{{COMMENT|In BetaCopter v0.10 and higher, by default the passthru communication is disabled when the flight controller is armed, and e.g. in-flight configuration would not work. This protection can be disabled by setting the 7-th bit in the MNT_STRM_BM parameter, by adding +64 to its value.}}
<!--
=== Solo Gimbal Mimicry ===
----
 
'''''Parameter in BetaCopter:'''''
* MNT_STRM_BM
 
The BetaCopter parameter MNT_STRM_BM, which is a bit mask, allows us to enable/disable various functions. The Solo gimbal mimicry feature can be enabled by setting the 6-th bit of MNT_STRM_BM, that is by adding +32 to the current value. With this feature enabled, the Solo Artoo controller will believe that a Solo gimbal is installed and not display the nasty "Solo Gimbal not found" messages anymore.
 
{|
|width=370|{{#ev:youtube|jSCJNR5k6Xk|360}}
|}-->


== Testing the Connection ==
== Testing the Connection ==


The serial/UAVCAN connection can be tested in several ways. The following tests do not require that the copter is completely built, and do not require that the copter is armed.
The serial MAVLink connection can be tested in several ways. Suggestions can be found in [[Using_STorM32_with_BetaPilot#Testing_the_Connection | Using STorM32 with BetaPilot: Testing the Connection]]. They may not all work with native ArduPilot, but many will.
 
* '''''STorM32-Link field in the STorM32 GUI''''': The {{GUI|Dashboard}} and {{GUI|Data Display}} each have a field which is related to the STorM32-Link. They should display OK, PRESENT or a similar positive message.
 
* '''''Message box in MissonPlanner''''': In the message box several messages related to the STorM32 should appear. In particular, a message like "STorM32 v2.40 nt v1.30 F103RC" informing about the STorM32 firmware version should be visible. Also, a message "STorM32 in NORMAL mode" should occur when the gimbal has finished initialization and entered NORMAL mode.
 
* '''''Trigger Camera NOW''''': In MissionPlanner the camera can be triggered by a right-mouse-click dropdown menu in the Flight Data map. On the STorM32 side the camera trigger can be easily tested by connecting a visible-light LED (red, green, blue, not IR) to the #IR port.
 
* '''''Gimbal RC Targeting''''': With the ArduPilot mount in RC Targeting mode (which should be the default setting), the camera can be moved with the transmitter sticks.
 
* '''''Sniffing the communication''''': One of course can sniff directly what is going on on the communication data lines. This is especially helpful when using CAN/UAVCAN. You when need a SLCAN adapter, e.g., the [http://www.olliw.eu/2017/uavcan-for-hobbyists/ UC4H SLCAN adapter].
 
== Gimbal Point ==
 
MissionPlanner supports what it calls a gimbal point. It is a blue point icon on the map, which indicates the estimated position at which the gimbal is looking at (see also e.g. https://github.com/ArduPilot/MissionPlanner/issues/1323). In order to activate it, the following ArduPilot parameters must be set:
 
'''''Settings in ArduPilot:'''''
* MNT_STAB_ROLL = 0
* MNT_STAB_TILT = 1

Latest revision as of 09:00, 28 January 2024

The information on this page refers to firmware v2.64e, and higher.

The STorM32 gimbal controller can communicate with an ArduPilot flight controller via a serial UART data link. The serial communication allows for a much richer data transmission and accordingly richer set of features than possible with the traditional connections such as PWM, PPM, SBUS, CRSF, and alike.

If you only need the range of functionality possible with the conventional tilt & pan control, then you may not need anything of the following. Some of the basic features can also be accomplished in traditional ways. Decide yourself which approach fits your needs best. :)

If you want to make best use of your STorM32 gimbal and want 2020-ish capabilities, then you may want to chose BetaPilot (BetaCopter/BetaPlane). This fork of ArduPilot is specifically designed for the STorM32 gimbal controller, and provides the best range of functions. For details see Using STorM32 with BetaPilot.

STorM32 - ArduPilot Support

ArduPilot offers three mount types, which can in principle be used with the STorM32 controller:

  • SToRM32 MAVLink: MNTx_TYPE = 4
  • SToRM32 Serial: MNTx_TYPE = 5
  • Greemsy: MNTx_TYPE = 6

For further details on the first two mounts, and instructions on how to use them, please visit ArduPilot Docs > Copter > Optional Hardware > Camera&Gimbals > SToRM32 Gimbal Controller.

The SToRM32 Serial mount (MNTx_TYPE = 5) does not work with v2.xx firmwares, and should not be considered except for legacy I2C setups running v0.9x firmware.

The Greemsy mount (MNTx_TYPE = 6) is MAVLink based, and thus can in principle be used with STorM32. This mount in fact exploits the 'new' gimbal messages of the gimbal protocol v2, and would offer some real benefits. However, it unfortuntaley violates and breaks the MAVLink standard in various respects, and interoperability with STorM32 is thus mixed.

The SToRM32 MAVLink mount (MNTx_TYPE = 4) currently appears to work best with STorM32 in the sense that it produces the least issues, but it is quite limited in its functionality.

For both the SToRM32 MAVLink (MNTx_TYPE = 4) and Greemsy (MNTx_TYPE = 6) mounts, it is not fully clear what works and what does not work at the time of writing, but the SToRM32 MAVLink mount (MNTx_TYPE = 4) should work fine with respect to controlling a STorM32 gimbal.

Disclaimer: ArduPilot's gimbal support is a constant source of issues, in terms of incompatibilities with the official MAVLink standard and/or flaws, and the details can quite vary with the ArduPilot firmware version. Also the ArduPilot documentation can be out-of-date. Please note that STorM32 can't do anything about this, it's ArduPilot, and please also note that the STorM32 firmware author is neither responsible for the implementation of ArduPilot's mount types nor for ArduPilot's documentation.

Virtual Channel Configuration

ArduPilot does not emit the RC_CHANNELS MAVLink message by default, which could be desired for taking advantage of the STorM32's virtual channel feature.

It can be activated in the flight controller by setting the SRx_RC_CHAN parameter to a non-zero value, where 'x' refers to the stream associated to the serial port which is used for the MAVLink communication with the STorM32 controller.

For more details on the feature see Virtual Channel Configuration.

Testing the Connection

The serial MAVLink connection can be tested in several ways. Suggestions can be found in Using STorM32 with BetaPilot: Testing the Connection. They may not all work with native ArduPilot, but many will.